
PHP Scripting Introduction

Making your Webpages Smarter

Limitations of HTML
• It is a “markup” language

– i.e. can only render the small set (<100 tags)
that are defined for it

• Is therefore inherently “stupid”
– It cannot make decisions, or dynamically

create page content
• Since the WWW earliest inceptions this

was considered unacceptable
– What was the solution?

Web scripting/programming
Languages?

• Developers came up with the technologies to
incorporate decision making with web page
content

• Takes two different models:
– Client side
– Server side

The “side” refers to where the code is processed

• Also take on two different flavours:
– Interpreted (scripting)
– Compiled (higher level programming languages)

3-Tier Architecture Review
• Most of the Internet is based on a 3-tier architecture:

including client, server database
– Client side

• Local machine running a web browser (IE, Netscape, Safari,
Mozilla, Opera…)

• Big scripting language: JavaScript
– Server side

• High-powered computer running web server (Apache or IIS are
the big ones)

• server can be configured to run different web
applications/technologies

• Several popular/powerful scripting technologies (PHP, JSP,
ASP to name a few)

• Originally named: Personal Home Page
Tools

• Now stands for: PHP: Hypertext
Preprocessor

• Open-source, server-side, HTML-
embedded Web scripting

• Free, full-featured, stable, fast, cross-
platform, easy to learn (looks like C++)

• Very popular, it compensates for HTML
inherent “stupidity”

What is PHP?

PHP Facts
• According to wikipedia:

http://en.wikipedia.org/wiki/PHP
– As of January 2013, PHP was used in more than 240

million websites (39% of those sampled) and was installed
on 2.1 million web servers

– As of February 2014, 82% of websites (whose server-side
programming language was known) used PHP.

– Recognized as the one of the most popular Apache Web
Server add-ons

– Parts of significant websites are written in PHP, including :
• Facebook
• Tumblr
• Content management systems (CMS): Droopal, Joomla, WordPress
• YouTube (originally)

http://en.wikipedia.org/wiki/PHP

What can PHP do?
• Perform system functions
• Gather information from forms
• Access databases
• Access/Modify cookies
• Start/Use sessions
• User authentication
• Encrypt Data
• Create/modify images

PHP Tags

• The web browser, when it comes across files
with a *.php extension looks for special tags
<? ?>
<?php ?> //use these in this course
<script language=“php”> </script>

• Processes what is inside the tags, then sends
html (i.e. text) to the requesting browser

PHP Syntax
• Variables can be of three (3) basic types:

– Strings
– Integers
– Floating point precision numbers

• Variables are declared always in the format:
$variable_name = “intial_value”;

– Notice: No data type required
• Variable naming rules:

– A variable name must start with a letter or an underscore "_"
– A variable name can only contain alpha-numeric characters and

underscores (a-z, A-Z, 0-9, and _)
– A variable name should not contain spaces. If a variable name is more than

one word, it should be separated with an underscore ($my_name) C++, or
with capitalization ($myName)

– Same as C++ naming

PHP Arithmetic Operators

• + $b = $a + 3;adds values
• - $b = $a – 3;subtracts values
• * $b = $a * 3;multiplies values
• / $b = $a / 3;divides values
• % $b = $a % 3;modulus operator

– modulus determines the remainder

PHP Assignment Operators
=

– assignment operator, place the value of the right-
hand operand into the memory spot of the left-
hand operand

+=
– addition assignment operator

-=
– subtraction assignment operator

.=
– string concatenation (the period will append the

right-hand operand to the end of the left-hand
operand

PHP Comparison Operators
a.k.a. Relational Operators

• == logical equal to
• != not equal to
• > greater than
• < less than
• >= greater than or equal to
• <= less than or equal to

PHP Logical Operators

• && Logical AND
– Implies true if and only if both

operands are true
• || Logical OR

– Implies true if either operand is true

PHP Provided Functions

• PHP comes with a vast collection of
pre-defined functions:
– http://ca3.php.net/manual/en/funcref.php

• One that we will use extensively is
echo() which will output text to a page
(similar to cout in a C++ console
application
– http://ca3.php.net/manual/en/function.echo.

php

http://ca3.php.net/manual/en/funcref.php
http://ca3.php.net/manual/en/function.echo.php

simple_example.php
<html>

<head>
<title>First PHP Page</title>

</head>
<body>

<h1><?php echo “Hello World!”; ?></h1>
</body>

</html>

require() and include()

• Allow you to place external file content into
the calling page

• Main difference: if an “include”d file is not
found the page will still load, whereas a
“require”d file that is not loaded will cause
the page to stop executing

• Both give you the option of centralizing
functionality (PHP functions) and/or page
content

header.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"

lang="en">
<head>

<meta http-equiv="content-type" content="text/html;
charset=UTF-8"/>
<title>A Page Built from Separate Files</title>
<link rel="stylesheet" type="text/css"
href=“css/webd2201.css"/>

</head>
<body>

footer.html

<img src="http://www.w3.org/Icons/valid-xhtml10"

alt="Valid XHTML 1.0 Strict" />

</body>
</html>

built_page1.php
<?php
include(“header.html");
echo "<h1>First Build Page</h1>";
include(“footer.html");
?>

Effectively
• What is sent to the browser is:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-
8"/>
<title>A Page Built from Separate Files</title>
<link rel="stylesheet" type="text/css" href=“css/webd2201.css"/>

</head>
<body>
<h1>First Build Page</h1>

<img src="http://www.w3.org/Icons/valid-xhtml10"

alt="Valid XHTML 1.0 Strict" />

</body>
</html>

What about the Title?

• For each page, there should be/could
be page specific details
– E.g. title, comments, banners etc

• If the pages that are “include”d need to
make decisions on the fly, they
CANNOT be HTML

header.php
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"

lang="en">
<head>
<meta http-equiv="content-type" content="text/html;
charset=UTF-8"/>

<title><?php echo $title; ?></title>
<link rel="stylesheet" type="text/css" href=“css/webd2201.css"/>
</head>
<body>

footer.php (no change)

<img src="http://www.w3.org/Icons/valid-xhtml10"

alt="Valid XHTML 1.0 Strict" />

</body>
</html>

built_page2.php
<?php
/*
$title has to be declared before the include or it
will
not be defined when the echo tries to display it in
header.php
*/
$title = “A Built Page with a Dynamic Title”;
include(“header.php");
echo "<h1>Second Build Page</h1>";
include(“footer.php");
?>

Effectively
• What is sent to the browser is:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-
8"/>

<title> A Built Page with a Dynamic Title</title>
<link rel="stylesheet" type="text/css" href=“css/webd2201.css"/>

</head>
<body>
<h1>Second Build Page</h1>

<img src="http://www.w3.org/Icons/valid-xhtml10"

alt="Valid XHTML 1.0 Strict" />

</body>
</html>

	PHP Scripting Introduction
	Limitations of HTML
	Web scripting/programming Languages?
	3-Tier Architecture Review
	Slide Number 5
	PHP Facts
	What can PHP do?
	PHP Tags
	PHP Syntax
	PHP Arithmetic Operators
	PHP Assignment Operators
	PHP Comparison Operators�a.k.a. Relational Operators
	PHP Logical Operators
	PHP Provided Functions
	simple_example.php
	require() and include()
	header.html
	footer.html
	built_page1.php
	Effectively
	What about the Title?
	header.php
	footer.php (no change)
	built_page2.php
	Effectively

