
Database and SQL Review

Web Resources
• SQL basics: https://www.w3schools.com/sql/
• Creating databases: https://www.postgresql.org/docs/9.3/sql-

createdatabase.html
• Dropping databases: https://www.postgresql.org/docs/9.3/sql-

dropdatabase.html
• Creating Tables: https://www.postgresql.org/docs/9.3/sql-

createtable.html
• Dropping Tables: https://www.postgresql.org/docs/9.3/sql-

droptable.html
• Granting permissions: https://www.postgresql.org/docs/9.3/sql-

grant.html
• Meta-commands: https://www.postgresql.org/docs/9.3/app-

psql.html

https://www.w3schools.com/sql/
https://www.postgresql.org/docs/9.3/sql-createdatabase.html
https://www.postgresql.org/docs/9.3/sql-dropdatabase.html
https://www.postgresql.org/docs/9.3/sql-createtable.html
https://www.postgresql.org/docs/9.3/sql-droptable.html
https://www.postgresql.org/docs/9.3/sql-grant.html
https://www.postgresql.org/docs/9.3/app-psql.html

SQL (Structured Query Language)
• Allows you to create and delete tables
• Four basic things you can do to an existing

table CRUD
– Create: INSERT statement
– Retrieve: SELECT statement
– Update: UPDATE statement
– Destroy: DELETE statement

• You can use clauses to narrow/format
your result sets or the records to
retrieve/modify

Creating Tables in a Database

• The command is as follows:
CREATE TABLE movies(

movie_num INTEGER,
title CHAR(35) NOT NULL,
actor INTEGER,
year INTEGER
);

• This will create a table named movies with four columns,
one of which will not support empty values (title)

• To delete this table the syntax is: DROP TABLE movies;

SQL Data Types
 Numeric

– Integers of various ranges: INTEGER (or INT), SMALLINT
– Real numbers of various precision: FLOAT, REAL, DOUBLE

PRECISION,
– or the preferred: NUMERIC(p, s) where p = precision and s =

scale (the number before and after the decimal)
 Character Strings

– Fixed length n: CHAR(n) or CHARACTER(n)
– Variable length of maximum n: VARCHAR(n) or CHAR

VARYING(n) (default n =1)
• Date/Time

- Date: contains only date info
- N.B. PostGreSQL on the opentech server takes the Date as a

string with the format of ‘YYYY-MM-DD’ (e.g. ‘1989-10-23’)
- Time: contains only time info
- Timestamp: contains both date and time information

For detailed list see:
http://www.postgresql.org/docs/7.3/interactive/datatype.html#DATATYPE-FLOAT

http://www.postgresql.org/docs/7.3/interactive/datatype.html#DATATYPE-FLOAT

SQL Data Qualifiers
 When you set up (i.e. CREATE) your tables you
can set conditions for the fields in your records:

 PRIMARY KEY
 Makes the field in the record required and has the

extra condition that the field must be unique in the
table (only one record can have a certain value for
the field)

 A DB table can only have one PRIMARY KEY
 NOT NULL

 Makes the field in the record mandatory (i.e. you
cannot create records that do not have the field
present)

 Different from PRIMARY KEY as multiple records
can have the same value

SELECT SQL Statements

• SELECT statements work on existing
records in a database

• Example:
SELECT * FROM movies;

• For readability, should be more specific
SELECT movie_num, title, actor,
year FROM movies;

SELECT Statement Qualifiers

• You can narrow down your results by
using various qualifiers
– WHERE column_name LOGIC_OPERATOR
value

• The logic operators are the same as
programming:
– <>, >=, =, <=, <, >

• N.B. single equal sign is the logic comparator
• And <> to check inequaliy (not the !=)

SELECT Statement Sorting

• You can sort your select result set with the
“ORDER BY” clause
– ORDER BY column_name

directional_qualifier
• The directional qualifier can be:

– ASC for ascending (default)
– DESC for descending

SELECT Statement Aliases
• For joining multiple tables in a single query it is

sometimes easier (clearer) to give table names aliases:
• E.g.:

SELECT movies.title, movies.year, actors.name
FROM movies, actors
WHERE movies.actor = actors.id
ORDER BY movies.year ASC

• Could be:
SELECT m.title, m.year, a.name
FROM movies m, actors a
WHERE m.actor = a.id
ORDER BY m.year ASC

• In this case, a and m become aliases for the tables actors
and movies respectively

Insert SQL Statements
• INSERT statements create records in a

database
• Example:

INSERT INTO movies VALUES(21, 'Casino
Royale', 'Daniel Craig', 2006);

• Should be more specific
INSERT INTO movies (movie_num, title, actor,
year) VALUES(21, 'Casino Royale', 'Daniel
Craig', 2006);

• N.B. strings are delimited by single quotes
('), not double quotes

Update SQL Statements

• UPDATE statements modify existing
records in a database, and uses same
clauses as SELECT statements

• Example:
UPDATE movies SET year = 2003
WHERE title = 'Die Another Day';

• Be aware you can update multiple records
with one UPDATE command (if not
careful)

DELETE SQL Statements
• DELETE statements remove existing records in a

database, and uses same clauses as SELECT
statements

• Example:
DELETE FROM movies WHERE title = 'Die Another Day'

• Be aware you can DELETE multiple records with one
DELETE command (if not careful)

• e.g.
DELETE FROM movies;

– Removes all records from the movies table (but does not remove
the table, you must use a DROP statement to delete)

SQL Comments

• SQL scripts support comments in two
formats:
– Single line comments start with -- (two

hyphens)
-- this is a single line SQL comment

– Multi-line comments are the same as c-style:
/*

This is a multi-line
SQL comment

*/

Creating a New PostGreSQL DB

• For this course (WEBD2201) you will not need to create your own
database (it is created for you)

• From the command line the command following command was
executed:

createdb userid_db
– Where userid is your user id (i.e. pufferd)
– When the database was successfully created the system displays

a “CREATE DATABASE” message
• Alternately, you can run:

CREATE DATABASE userid_db
from inside a database

Creating a New PostGreSQL DB
• Now that a database exists for you, and you have been

given ownership, when you log onto the server with PuTTy, if
you type: psql userid_db
– You will be prompted for your password
– After entering it, the system will take you into your

database, where you can perform SQL commands
(prompt will be => instead of the # or $ OS prompt)

• To change your password at the sql prompt => type:
ALTER USER your_user_id WITH ENCRYPTED PASSWORD 'your_new_password';

Removing a Database
• If you create a database (misnamed or unwanted), to

remove it type:
dropdb nogood_db

where nogood_db is the unused/unwanted database

• NOTE: do NOT execute this command on
your lastnamefirstinitial_db database,
you are able to remove your db, but your
user does not have permission to create a
new one

Running SQL Script from the
command line

• For large scale applications, it is advantageous to set up
“build” scripts that drop/create databases as required

• Easier to implement changes than doing everything
manually

• At the command prompt type:
psql –d userid_db –f script_file.sql
– Where userid_db is the database to be modified and
script_file.sql is the SQL file with the commands
to be executed (must be co-located in the current
directory, or else fully qualify the address)

Allowing Data Access to Users
• When a *.sql script is run by a PostgreSQL

user, the user owns the table and the data
in the table

• If a different user needs to access the data
they must be given permission explicitly
– E.g. in this class your instructor needs to see

your tables/data
• The command to given certain access

levels on your table to anpther user is:
GRANT

GRANTing Privileges
GRANT { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES | TRIGGER }

[, ...] | ALL [PRIVILEGES] }
ON { [TABLE] table_name [, ...]

| ALL TABLES IN SCHEMA schema_name [, ...] }
TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

• For this course add the following line in your SQL build script
GRANT ALL ON table_name TO faculty;

• Example:
DROP TABLE actors;
CREATE TABLE actors(

id INTEGER,
name CHAR(20)

);
GRANT ALL ON actors TO faculty;
INSERT INTO actors(id, name) VALUES…

PostGreSQL Meta-commands
• There are several commands that are defined for

PostGreSQL that allow users some short-cuts to administer
databases or runs scripts

• Some common and useful ones that can be executed, at
the PostGreSQL => prompt type:
– \q will quit or exit the database, takes you back to the OS
– \d will “dump” (quickly preview) the database’s content
– \d table_name will dump a specific table’s info
– \i db_script.sql allows you to run a script from outside the db prompt

NOTE: this will default go to the directory the user was in when
they connected to the database, to use a file from a different
directory the file path must be fully qualified:
\i /var/www/users/webd2201/user_id/sql/db_script.sql

	Database and SQL Review
	Web Resources
	SQL (Structured Query Language)
	Creating Tables in a Database
	Slide Number 5
	Slide Number 6
	SELECT SQL Statements
	SELECT Statement Qualifiers
	SELECT Statement Sorting
	SELECT Statement Aliases
	Insert SQL Statements
	Update SQL Statements
	DELETE SQL Statements
	SQL Comments
	Creating a New PostGreSQL DB
	Creating a New PostGreSQL DB
	Removing a Database
	Running SQL Script from the command line
	Allowing Data Access to Users
	GRANTing Privileges
	PostGreSQL Meta-commands

