
Database and SQL Review

Web Resources
• SQL basics: https://www.w3schools.com/sql/
• Creating databases: https://www.postgresql.org/docs/9.3/sql-

createdatabase.html
• Dropping databases: https://www.postgresql.org/docs/9.3/sql-

dropdatabase.html
• Creating Tables: https://www.postgresql.org/docs/9.3/sql-

createtable.html
• Dropping Tables: https://www.postgresql.org/docs/9.3/sql-

droptable.html
• Granting permissions: https://www.postgresql.org/docs/9.3/sql-

grant.html
• Meta-commands: https://www.postgresql.org/docs/9.3/app-

psql.html

https://www.w3schools.com/sql/
https://www.postgresql.org/docs/9.3/sql-createdatabase.html
https://www.postgresql.org/docs/9.3/sql-dropdatabase.html
https://www.postgresql.org/docs/9.3/sql-createtable.html
https://www.postgresql.org/docs/9.3/sql-droptable.html
https://www.postgresql.org/docs/9.3/sql-grant.html
https://www.postgresql.org/docs/9.3/app-psql.html

SQL (Structured Query Language)
• Allows you to create and delete tables
• Four basic things you can do to an existing

table CRUD
– Create: INSERT statement
– Retrieve: SELECT statement
– Update: UPDATE statement
– Destroy: DELETE statement

• You can use clauses to narrow/format
your result sets or the records to
retrieve/modify

Creating Tables in a Database

• The command is as follows:
CREATE TABLE movies(

movie_num INTEGER,
title CHAR(35) NOT NULL,
actor INTEGER,
year INTEGER
);

• This will create a table named movies with four columns,
one of which will not support empty values (title)

• To delete this table the syntax is: DROP TABLE movies;

SQL Data Types
 Numeric

– Integers of various ranges: INTEGER (or INT), SMALLINT
– Real numbers of various precision: FLOAT, REAL, DOUBLE

PRECISION,
– or the preferred: NUMERIC(p, s) where p = precision and s =

scale (the number before and after the decimal)
 Character Strings

– Fixed length n: CHAR(n) or CHARACTER(n)
– Variable length of maximum n: VARCHAR(n) or CHAR

VARYING(n) (default n =1)
• Date/Time

- Date: contains only date info
- N.B. PostGreSQL on the opentech server takes the Date as a

string with the format of ‘YYYY-MM-DD’ (e.g. ‘1989-10-23’)
- Time: contains only time info
- Timestamp: contains both date and time information

For detailed list see:
http://www.postgresql.org/docs/7.3/interactive/datatype.html#DATATYPE-FLOAT

http://www.postgresql.org/docs/7.3/interactive/datatype.html#DATATYPE-FLOAT

SQL Data Qualifiers
 When you set up (i.e. CREATE) your tables you
can set conditions for the fields in your records:

 PRIMARY KEY
 Makes the field in the record required and has the

extra condition that the field must be unique in the
table (only one record can have a certain value for
the field)

 A DB table can only have one PRIMARY KEY
 NOT NULL

 Makes the field in the record mandatory (i.e. you
cannot create records that do not have the field
present)

 Different from PRIMARY KEY as multiple records
can have the same value

SELECT SQL Statements

• SELECT statements work on existing
records in a database

• Example:
SELECT * FROM movies;

• For readability, should be more specific
SELECT movie_num, title, actor,
year FROM movies;

SELECT Statement Qualifiers

• You can narrow down your results by
using various qualifiers
– WHERE column_name LOGIC_OPERATOR
value

• The logic operators are the same as
programming:
– <>, >=, =, <=, <, >

• N.B. single equal sign is the logic comparator
• And <> to check inequaliy (not the !=)

SELECT Statement Sorting

• You can sort your select result set with the
“ORDER BY” clause
– ORDER BY column_name

directional_qualifier
• The directional qualifier can be:

– ASC for ascending (default)
– DESC for descending

SELECT Statement Aliases
• For joining multiple tables in a single query it is

sometimes easier (clearer) to give table names aliases:
• E.g.:

SELECT movies.title, movies.year, actors.name
FROM movies, actors
WHERE movies.actor = actors.id
ORDER BY movies.year ASC

• Could be:
SELECT m.title, m.year, a.name
FROM movies m, actors a
WHERE m.actor = a.id
ORDER BY m.year ASC

• In this case, a and m become aliases for the tables actors
and movies respectively

Insert SQL Statements
• INSERT statements create records in a

database
• Example:

INSERT INTO movies VALUES(21, 'Casino
Royale', 'Daniel Craig', 2006);

• Should be more specific
INSERT INTO movies (movie_num, title, actor,
year) VALUES(21, 'Casino Royale', 'Daniel
Craig', 2006);

• N.B. strings are delimited by single quotes
('), not double quotes

Update SQL Statements

• UPDATE statements modify existing
records in a database, and uses same
clauses as SELECT statements

• Example:
UPDATE movies SET year = 2003
WHERE title = 'Die Another Day';

• Be aware you can update multiple records
with one UPDATE command (if not
careful)

DELETE SQL Statements
• DELETE statements remove existing records in a

database, and uses same clauses as SELECT
statements

• Example:
DELETE FROM movies WHERE title = 'Die Another Day'

• Be aware you can DELETE multiple records with one
DELETE command (if not careful)

• e.g.
DELETE FROM movies;

– Removes all records from the movies table (but does not remove
the table, you must use a DROP statement to delete)

SQL Comments

• SQL scripts support comments in two
formats:
– Single line comments start with -- (two

hyphens)
-- this is a single line SQL comment

– Multi-line comments are the same as c-style:
/*

This is a multi-line
SQL comment

*/

Creating a New PostGreSQL DB

• For this course (WEBD2201) you will not need to create your own
database (it is created for you)

• From the command line the command following command was
executed:

createdb userid_db
– Where userid is your user id (i.e. pufferd)
– When the database was successfully created the system displays

a “CREATE DATABASE” message
• Alternately, you can run:

CREATE DATABASE userid_db
from inside a database

Creating a New PostGreSQL DB
• Now that a database exists for you, and you have been

given ownership, when you log onto the server with PuTTy, if
you type: psql userid_db
– You will be prompted for your password
– After entering it, the system will take you into your

database, where you can perform SQL commands
(prompt will be => instead of the # or $ OS prompt)

• To change your password at the sql prompt => type:
ALTER USER your_user_id WITH ENCRYPTED PASSWORD 'your_new_password';

Removing a Database
• If you create a database (misnamed or unwanted), to

remove it type:
dropdb nogood_db

where nogood_db is the unused/unwanted database

• NOTE: do NOT execute this command on
your lastnamefirstinitial_db database,
you are able to remove your db, but your
user does not have permission to create a
new one

Running SQL Script from the
command line

• For large scale applications, it is advantageous to set up
“build” scripts that drop/create databases as required

• Easier to implement changes than doing everything
manually

• At the command prompt type:
psql –d userid_db –f script_file.sql
– Where userid_db is the database to be modified and
script_file.sql is the SQL file with the commands
to be executed (must be co-located in the current
directory, or else fully qualify the address)

Allowing Data Access to Users
• When a *.sql script is run by a PostgreSQL

user, the user owns the table and the data
in the table

• If a different user needs to access the data
they must be given permission explicitly
– E.g. in this class your instructor needs to see

your tables/data
• The command to given certain access

levels on your table to anpther user is:
GRANT

GRANTing Privileges
GRANT { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES | TRIGGER }

[, ...] | ALL [PRIVILEGES] }
ON { [TABLE] table_name [, ...]

| ALL TABLES IN SCHEMA schema_name [, ...] }
TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

• For this course add the following line in your SQL build script
GRANT ALL ON table_name TO faculty;

• Example:
DROP TABLE actors;
CREATE TABLE actors(

id INTEGER,
name CHAR(20)

);
GRANT ALL ON actors TO faculty;
INSERT INTO actors(id, name) VALUES…

PostGreSQL Meta-commands
• There are several commands that are defined for

PostGreSQL that allow users some short-cuts to administer
databases or runs scripts

• Some common and useful ones that can be executed, at
the PostGreSQL => prompt type:
– \q will quit or exit the database, takes you back to the OS
– \d will “dump” (quickly preview) the database’s content
– \d table_name will dump a specific table’s info
– \i db_script.sql allows you to run a script from outside the db prompt

NOTE: this will default go to the directory the user was in when
they connected to the database, to use a file from a different
directory the file path must be fully qualified:
\i /var/www/users/webd2201/user_id/sql/db_script.sql

	Database and SQL Review
	Web Resources
	SQL (Structured Query Language)
	Creating Tables in a Database
	Slide Number 5
	Slide Number 6
	SELECT SQL Statements
	SELECT Statement Qualifiers
	SELECT Statement Sorting
	SELECT Statement Aliases
	Insert SQL Statements
	Update SQL Statements
	DELETE SQL Statements
	SQL Comments
	Creating a New PostGreSQL DB
	Creating a New PostGreSQL DB
	Removing a Database
	Running SQL Script from the command line
	Allowing Data Access to Users
	GRANTing Privileges
	PostGreSQL Meta-commands

